Purposes

Login / Register

Purposes

Taiji, a Chinese space-based gravitational wave detection project, aims to explore the millihertz gravitational wave universe with unprecedented sensitivity, targeting astrophysical and cosmological sources including Galactic binaries, massive black hole binaries, extreme mass-ratio inspirals, and stochastic gravitational wave backgrounds, etc. These observations are expected to provide transformative insights into astrophysics, cosmology, and fundamental physics. However, Taiji’s data analysis faces unique challenges distinct from ground-based detectors like LIGO-Virgo-KAGRA, such as the overlap of numerous signals, extended data durations, more rigorous accuracy requirements for the waveform templates, non-negligible subdominant waveform complexities, incompletely characterized noise spectra, non-stationary noises, and various data anomalies. This paper presents the second round of Taiji Data Challenge, a collection of simulation datasets designed as a shared platform for resolving these critical data analysis problems. The platform distinguishes from previous works by the systematic integration of orbital dynamics based on the full drag-free and attitude control simulation, extended noise sources, more sophisticated and overlapping gravitational wave signals, second-generation time-delay interferometry and the coupling effect of time-varying armlengths, etc. Concuhhently released is the open-source toolkit Triangle, which offers the capabilities for customized simulation of signals, noises and other instrumental effects. By taking a step further towards realistic detection, Taiji Data Challenge II and Triangle altogether serve as a new testbed, supporting the development of Taiji's global analysis and end-to-end pipelines, and ultimately bridging the gaps between observation and scientific objectives.